Materials for electrochemical capacitors.

نویسندگان

  • Patrice Simon
  • Yury Gogotsi
چکیده

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Issue: Materials for Electrochemical Capacitors and Batteries

Electrochemical capacitors and rechargeable batteries have received worldwide attention due to their excellent energy storage capability for a variety of applications. The rapid development of these technologies is propelled by the advanced electrode materials and new energy storage systems. It is believed that research efforts can improve the device performance to meet the ever-increasing requ...

متن کامل

Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene

Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of...

متن کامل

Carbons, Ionic Liquids, and Quinones for Electrochemical Capacitors

Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well-known strategies to incr...

متن کامل

FABRICATION AND CHARACTERIZATION OF POLYANILINE-GRAPHENE COMPOSITE AS ELECTRODE IN ELECTROCHEMICAL CAPACITOR

In this study, polyaniline-graphene composites with different nano-structures are synthesized and the behaviour of the obtained composites serving as electrode materials in electrochemical capacitors is studied. The morphology, crystal structure, and thermal stability of the composites are examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Thermal gravimetric analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2008